这是本文档旧的修订版!
2020.07.25 2020牛客暑期多校训练营(第五场) prob:4:4:11
rnk:244/1116
2020.07.27 2020牛客暑期多校训练营(第六场) prob:6:7:11
rnk:62/1019
在$\text{CF}$上刷了一些网络流的题。
fwt刷题——有更新
无
来源:luogu#P5994
tag:思路,最小生成树。
概述:
魔术师的桌子上有$n$个杯子排成一行,编号为$1,2,…,n$,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品。花费$c_{i,j}$元,魔术师就会告诉你杯子$i,i+1,…,j$底下藏有球的总数的奇偶性。
采取最优的询问策略,你至少需要花费多少元,才能保证猜出哪些杯子底下藏着球?
答案:
我们知道,要想确切的知道位置i的底下是否有球,就必须确切的知道$c_{i,i}$的奇偶性,换句话说,我们必须知道$sum_i$和$sum_{i-1}$的奇偶性,这样,我们只需要知道$n$个$sum$的奇偶性即可。
这样我们需要把原序列分为$n$段,每次查询一个$i,j$会把原序列分为2段,所以只需要查询$n-1$次,我们发现这其实是一个最小生成树问题,在$i-1$和$j$之间连接边权为$c_{i,j}$的边然后求最小生成树即可。
comments:很精巧的最小生成树模型转化。