用户工具

站点工具


2023-2024:teams:al_in_and_back_to_whk:24-nowcoder-2:j

这是本文档旧的修订版!


题意简述

一个作用在 $\{1,2,\dots,n \}$ 上的一一映射 $f$ 是好的,当且仅当其由不动点和二元置换组成,其权值为 $a^{不动点个数}$ ($a$ 是给定常数)。求所有好的映射的权值和。

时限:3s

数据范围:$n \le 5*10^9, 1 \le a \le 998244352$

题解

我们考虑令 $f(n)$ 表示 $n$ 对应的答案。那么我们首先可以得到一个递推式为 $f(n)=a*f(n-1)+(n-1)*f(n-2)$ ,其含义就是我们可以选择 $n$ 是单独一个不动点还是和前面 $n-1$ 个数中的一个形成二元置换。

然后我们考虑直接写出 $f(n)$ 的表达式,就是 $f(n)=\sum_{i=0}^{n/2}{\binom{n}{2i}*\frac{(2i)!}{2^i*i!}*a^{n-2i}}$,就是说枚举二元置换个数,然后方案数就是选 $2i$ 个出来之后,先去排列一下,之后去掉相邻的两个交换和整体 $i$ 组之间的顺序。这个我们可以化简一下就是 $f(n)=\sum_{i=0}^{n/2}{\binom{n}{2i}*(2i-1)!!*a^{n-2i}}$ 。

2023-2024/teams/al_in_and_back_to_whk/24-nowcoder-2/j.1721387428.txt.gz · 最后更改: 2024/07/19 19:10 由 11231123